Menjelajahi Volatilitas Bergerak yang Tertimbang Tertimbang Secara Eksponensial adalah ukuran risiko yang paling umum, namun ada beberapa rasa. Dalam artikel sebelumnya, kami menunjukkan bagaimana cara menghitung volatilitas historis sederhana. (Untuk membaca artikel ini, lihat Menggunakan Volatilitas untuk Mengukur Risiko Masa Depan.) Kami menggunakan data harga saham Googles aktual untuk menghitung volatilitas harian berdasarkan data stok 30 hari. Pada artikel ini, kami akan memperbaiki volatilitas sederhana dan membahas rata-rata bergerak tertimbang eksponensial (eksploitatif tertimbang rata-rata) (EWMA). Sejarah Vs. Volatilitas Tersirat Pertama, mari kita letakkan metrik ini menjadi sedikit perspektif. Ada dua pendekatan yang luas: volatilitas historis dan tersirat (atau implisit). Pendekatan historis mengasumsikan bahwa masa lalu adalah prolog kita mengukur sejarah dengan harapan itu bersifat prediktif. Sebaliknya, volatilitas tersirat mengabaikan sejarah yang memecahkan volatilitas yang diimplikasikan oleh harga pasar. Ia berharap pasar tahu yang terbaik dan bahwa harga pasar mengandung, bahkan jika secara implisit, perkiraan konsensus volatilitas. (Untuk pembacaan yang terkait, lihat Kegunaan dan Batas Volatilitasnya.) Jika kita berfokus hanya pada tiga pendekatan historis (di sebelah kiri di atas), mereka memiliki dua kesamaan: Hitunglah serangkaian pengembalian periodik Terapkan skema pembobotan Pertama, kita Hitung kembali periodik. Itu biasanya serangkaian pengembalian harian dimana masing-masing imbal hasil dinyatakan dalam istilah yang terus bertambah. Untuk setiap hari, kita mengambil log natural dari rasio harga saham (yaitu harga hari ini dibagi dengan harga kemarin, dan seterusnya). Ini menghasilkan serangkaian pengembalian harian, dari u i sampai u i-m. Tergantung berapa hari (m hari) yang kita ukur. Itu membawa kita ke langkah kedua: Di sinilah ketiga pendekatan berbeda. Pada artikel sebelumnya (Menggunakan Volatilitas Untuk Mengukur Risiko Masa Depan), kami menunjukkan bahwa di bawah beberapa penyederhanaan yang dapat diterima, varians sederhana adalah rata-rata pengembalian kuadrat: Perhatikan bahwa jumlah ini masing-masing dari pengembalian periodik, kemudian dibagi total oleh Jumlah hari atau pengamatan (m). Jadi, yang benar-benar hanya rata-rata kuadrat periodik kembali. Dengan kata lain, setiap kuadrat kembali diberi bobot yang sama. Jadi, jika alpha (a) adalah faktor pembobotan (khusus, 1m), maka varians sederhana terlihat seperti ini: EWMA Meningkatkan Varians Sederhana Kelemahan pendekatan ini adalah bahwa semua pengembalian mendapatkan bobot yang sama. Kembali ke masa lalu (sangat baru) tidak berpengaruh lagi terhadap varians daripada return bulan lalu. Masalah ini diperbaiki dengan menggunakan rata-rata pergerakan tertimbang eksponensial (EWMA), di mana pengembalian yang lebih baru memiliki bobot yang lebih besar pada variansnya. Rata-rata bergerak tertimbang secara eksponensial (EWMA) memperkenalkan lambda. Yang disebut parameter smoothing. Lambda harus kurang dari satu. Dengan kondisi seperti itu, daripada bobot yang sama, setiap kuadrat kembali dibobot oleh pengganda sebagai berikut: Misalnya, RiskMetrics TM, perusahaan manajemen risiko keuangan, cenderung menggunakan lambda 0,94, atau 94. Dalam kasus ini, Paling akhir) kuadrat periodik kembali ditimbang oleh (1-0.94) (94) 0 6. Kuadrat berikutnya kembali hanyalah lambda-kelipatan dari berat sebelumnya dalam kasus ini 6 dikalikan 94 5.64. Dan hari ketiga berat sama dengan (1-0.94) (0.94) 2 5.30. Itulah makna eksponensial dalam EWMA: setiap bobot adalah pengganda konstan (yaitu lambda, yang harus kurang dari satu) dari berat hari sebelumnya. Hal ini memastikan varians yang berbobot atau bias terhadap data yang lebih baru. (Untuk mempelajari lebih lanjut, lihat Lembar Kerja Excel untuk Volatilitas Google). Perbedaan antara hanya volatilitas dan EWMA untuk Google ditunjukkan di bawah ini. Volatilitas sederhana secara efektif membebani setiap return periodik sebesar 0,199 seperti yang ditunjukkan pada Kolom O (kami memiliki data harga saham dua tahun. Itu adalah 509 return harian dan 1509 0.196). Tapi perhatikan bahwa Kolom P memberi bobot 6, lalu 5.64, lalu 5.3 dan seterusnya. Itulah satu-satunya perbedaan antara varians sederhana dan EWMA. Ingat: Setelah kita menghitung keseluruhan rangkaian (di Kolom Q), kita memiliki varians, yang merupakan kuadrat dari standar deviasi. Jika kita ingin volatilitas, kita perlu ingat untuk mengambil akar kuadrat varians itu. Apa perbedaan dalam volatilitas harian antara varians dan EWMA dalam kasus Googles yang signifikan: Variance sederhana memberi volatilitas harian sebesar 2,4 namun EWMA memberikan volatilitas harian hanya 1,4 (lihat spreadsheet untuk rinciannya). Rupanya, volatilitas Googles baru-baru ini turun, oleh karena itu, varians sederhana mungkin sangat tinggi secara artifisial. Todays Varians Adalah Fungsi Varian Jurus Hari Ini, kami akan mempertimbangkan untuk menghitung deret berat badan yang menurun secara eksponensial. Kami tidak akan melakukan matematika di sini, tapi salah satu fitur terbaik dari EWMA adalah keseluruhan rangkaian mudah direduksi menjadi formula rekursif: Rekursif berarti referensi varians hari ini (yaitu fungsi dari varian hari sebelumnya). Anda dapat menemukan formula ini di dalam spreadsheet juga, dan menghasilkan hasil yang sama persis dengan perhitungan longhand yang dikatakan: Variasi hari ini (di bawah EWMA) sama dengan varians kemarin (tertimbang oleh lambda) ditambah kembalinya kuadran kemarin (ditimbang oleh satu minus lambda). Perhatikan bagaimana kita hanya menambahkan dua istilah bersama: varians berbobot kemarin dan kemarin berbobot, kuadrat kembali. Meski begitu, lambda adalah parameter penghalusan kita. Lambda yang lebih tinggi (misalnya RiskMetrics 94) mengindikasikan peluruhan lambat dalam rangkaian - secara relatif, kita akan memiliki lebih banyak titik data dalam rangkaian dan akan jatuh lebih lambat. Di sisi lain, jika kita mengurangi lambda, kita mengindikasikan peluruhan yang lebih tinggi: bobotnya akan jatuh lebih cepat dan, sebagai akibat langsung dari pembusukan yang cepat, lebih sedikit titik data yang digunakan. (Dalam spreadsheet, lambda adalah masukan, jadi Anda bisa bereksperimen dengan sensitivitasnya). Ringkasan Volatilitas adalah deviasi standar instan dari stok dan metrik risiko yang paling umum. Ini juga merupakan akar kuadrat dari varians. Kita dapat mengukur varians secara historis atau implisit (volatilitas tersirat). Saat mengukur secara historis, metode termudah adalah varians sederhana. Tapi kelemahan dengan varians sederhana adalah semua kembali mendapatkan bobot yang sama. Jadi kita menghadapi trade-off klasik: kita selalu menginginkan lebih banyak data tapi semakin banyak data yang kita miliki, semakin banyak perhitungan kita yang terdilusi oleh data yang jauh (kurang relevan). Rata-rata pergerakan tertimbang eksponensial (EWMA) meningkat dengan varians sederhana dengan menetapkan bobot ke tingkat pengembalian periodik. Dengan melakukan ini, kita berdua bisa menggunakan ukuran sampel yang besar namun juga memberi bobot lebih besar pada hasil yang lebih baru. (Untuk melihat tutorial film tentang topik ini, kunjungi Penyu Bionik.) Hitung Volatilitas Historis Menggunakan EWMA Volatility adalah ukuran risiko yang paling umum digunakan. Volatilitas dalam pengertian ini dapat berupa volatilitas historis (yang diamati dari data masa lalu), atau volatilitasnya bisa tersirat (diamati dari harga pasar instrumen keuangan). Volatilitas historis dapat dihitung dalam tiga cara, yaitu: Volatilitas sederhana, Exponentially Weighted Moving Rata-rata (EWMA) GARCH Salah satu keuntungan utama EWMA adalah memberi bobot lebih besar pada pengembalian baru-baru ini sambil menghitung imbal hasil. Pada artikel ini, kita akan melihat bagaimana volatilitas dihitung dengan menggunakan EWMA. Jadi, mari kita mulai: Langkah 1: Hitung hasil log dari seri harga Jika kita melihat harga saham, kita dapat menghitung return lognormal harian, dengan menggunakan rumus ln (P i P i -1), di mana P mewakili masing-masing Hari penutupan harga saham Kita perlu menggunakan log alami karena kita ingin hasilnya terus digabungkan. Kami sekarang akan memiliki pengembalian harian untuk keseluruhan seri harga. Langkah 2: Persegi kembalinya Langkah selanjutnya adalah mengambil kuadrat pengembalian yang panjang. Ini sebenarnya adalah perhitungan varians sederhana atau volatilitas yang ditunjukkan oleh rumus berikut: Di sini, u mewakili pengembalian, dan m mewakili jumlah hari. Langkah 3: Tetapkan bobot Tentukan bobot sedemikian rupa sehingga hasil akhir-akhir ini memiliki bobot lebih tinggi dan hasil yang lebih tua memiliki berat lebih rendah. Untuk ini kita memerlukan faktor yang disebut Lambda (), yaitu konstanta pemulusan atau parameter persisten. Bobot diberikan sebagai (1-) 0. Lambda harus kurang dari 1. Metrik risiko menggunakan lambda 94. Bobot pertama adalah (1-0.94) 6, berat kedua adalah 60,94 5,64 dan seterusnya. Di EWMA semua jumlah bobotnya menjadi 1, namun harganya menurun dengan rasio konstan. Langkah 4: Multiply Returns-kuadrat dengan bobot Langkah 5: Ambillah penjumlahan R 2 w Inilah varian akhir EWMA. Volatilitasnya akan menjadi akar kuadrat dari varians. Berikut screenshot menunjukkan perhitungannya. Contoh di atas yang kami lihat adalah pendekatan yang dijelaskan oleh RiskMetrics. Bentuk umum EWMA dapat direpresentasikan sebagai rumus rekursif berikut: Moving Averages - Rata-rata Bergerak Sederhana dan Eksponensial - Pendahuluan Sederhana dan Eksponensial Moving averages memperlengkapi data harga menjadi indikator tren berikut. Mereka tidak memprediksi arah harga, melainkan menentukan arah saat ini dengan lag. Moving averages lag karena mereka didasarkan pada harga masa lalu. Terlepas dari lag ini, moving averages membantu tindakan harga yang lancar dan menyaring noise. Mereka juga membentuk blok bangunan untuk banyak indikator dan lapisan teknis lainnya, seperti Bollinger Bands. MACD dan McClellan Oscillator. Dua jenis moving average yang paling populer adalah Simple Moving Average (SMA) dan Exponential Moving Average (EMA). Rata-rata bergerak ini dapat digunakan untuk mengidentifikasi arah tren atau menentukan level support dan resistance yang potensial. Berikut adalah bagan dengan SMA dan EMA di atasnya: Perhitungan Rata-rata Bergerak Sederhana Rata-rata pergerakan sederhana terbentuk dengan menghitung harga rata-rata sekuritas selama periode tertentu. Rata-rata pergerakan paling banyak didasarkan pada harga penutupan. Rata-rata pergerakan sederhana 5 hari adalah jumlah lima hari harga penutupan dibagi lima. Sesuai namanya, rata-rata bergerak adalah rata-rata bergerak. Data lama dijatuhkan saat data baru tersedia. Hal ini menyebabkan rata-rata bergerak sepanjang skala waktu. Berikut adalah contoh rata-rata pergerakan 5 hari yang berkembang selama tiga hari. Hari pertama rata-rata bergerak hanya mencakup lima hari terakhir. Hari kedua rata-rata bergerak menurunkan titik data pertama (11) dan menambahkan titik data baru (16). Hari ketiga dari rata-rata bergerak berlanjut dengan menjatuhkan titik data pertama (12) dan menambahkan titik data baru (17). Pada contoh di atas, harga secara bertahap meningkat dari 11 menjadi 17 di atas total tujuh hari. Perhatikan bahwa moving average juga naik dari 13 menjadi 15 selama periode perhitungan tiga hari. Perhatikan juga bahwa setiap nilai rata-rata bergerak tepat di bawah harga terakhir. Misalnya, rata-rata bergerak untuk hari pertama sama dengan 13 dan harga terakhir adalah 15. Harga empat hari sebelumnya lebih rendah dan ini menyebabkan rata-rata bergerak menjadi lag. Perhitungan Eksponensial Pindah Eksponensial Rata-rata pergerakan eksponensial mengurangi lag dengan menerapkan bobot lebih terhadap harga terkini. Bobot yang diterapkan pada harga terbaru bergantung pada jumlah periode pada moving average. Ada tiga langkah untuk menghitung rata-rata pergerakan eksponensial. Pertama, hitung rata-rata bergerak sederhana. Exponential moving average (EMA) harus dimulai di suatu tempat sehingga rata-rata bergerak sederhana digunakan sebagai EMA periode sebelumnya pada perhitungan pertama. Kedua, hitung pengganda bobot. Ketiga, hitung rata-rata pergerakan eksponensial. Rumus di bawah ini adalah untuk EMA 10 hari. Rata-rata pergerakan eksponensial 10 periode menerapkan bobot 18,18 pada harga terbaru. EMA 10 periode juga bisa disebut 18,18 EMA. EMA 20 periode berlaku 9,52 dengan harga paling tinggi (2 (201) .0952). Perhatikan bahwa pembobotan untuk jangka waktu lebih pendek lebih banyak daripada pembobotan untuk jangka waktu yang lebih lama. Sebenarnya, bobot turun setengahnya setiap kali rata-rata bergerak rata-rata berganda. Jika Anda menginginkan persentase tertentu untuk EMA, Anda dapat menggunakan rumus ini untuk mengubahnya menjadi periode waktu dan kemudian memasukkan nilai itu sebagai parameter EMA039: Berikut adalah contoh spreadsheet dari rata-rata pergerakan sederhana 10 hari dan 10- Hari rata-rata bergerak eksponensial untuk Intel. Simple moving averages lurus ke depan dan memerlukan sedikit penjelasan. Rata-rata 10 hari hanya bergerak karena harga baru sudah tersedia dan harga lama turun. Rata-rata bergerak eksponensial dimulai dengan nilai rata-rata bergerak sederhana (22.22) pada perhitungan pertama. Setelah perhitungan pertama, rumus normal mengambil alih. Karena EMA dimulai dengan rata-rata bergerak sederhana, nilainya sebenarnya tidak akan terealisasi sampai 20 atau lebih periode kemudian. Dengan kata lain, nilai pada spreadsheet excel mungkin berbeda dari nilai grafik karena periode lihat belakang yang pendek. Spreadsheet ini hanya akan kembali 30 periode, yang berarti pengaruhnya terhadap rata-rata pergerakan sederhana memiliki 20 periode untuk menghilang. StockCharts kembali setidaknya 250 periode (biasanya jauh lebih jauh) untuk perhitungannya sehingga efek rata-rata bergerak sederhana pada perhitungan pertama telah hilang sepenuhnya. Faktor Lag Semakin lama rata-rata bergerak, semakin tertinggal. Rata-rata pergerakan eksponensial 10 hari akan memeluk harga cukup dekat dan berbalik segera setelah harga berbalik. Rata-rata bergerak pendek seperti kapal cepat - gesit dan cepat berubah. Sebaliknya, rata-rata pergerakan 100 hari berisi banyak data masa lalu yang memperlambatnya. Rata-rata bergerak yang lebih panjang seperti kapal tanker laut - lesu dan lamban untuk berubah. Dibutuhkan pergerakan harga yang lebih besar dan lebih lama untuk moving average 100 hari untuk mengubah arah. Bagan di atas menunjukkan SampP 500 ETF dengan EMA 10 hari mengikuti harga dan SMA 100 hari yang digiling lebih tinggi. Bahkan dengan penurunan Januari-Februari, SMA 100 hari itu mengikuti kursus dan tidak menolak. SMA 50 hari cocok di suatu tempat antara rata-rata pergerakan 10 dan 100 hari ketika sampai pada faktor lag. Simple vs Exponential Moving Averages Meskipun ada perbedaan yang jelas antara rata-rata bergerak sederhana dan rata-rata bergerak eksponensial, yang satu tidak selalu lebih baik dari yang lain. Rata-rata pergerakan eksponensial memiliki sedikit lag dan oleh karena itu lebih sensitif terhadap harga terkini - dan perubahan harga terkini. Rata-rata bergerak eksponensial akan berubah sebelum rata-rata bergerak sederhana. Rata-rata pergerakan sederhana, di sisi lain, mewakili rata-rata harga sebenarnya untuk keseluruhan periode waktu. Dengan demikian, rata-rata pergerakan sederhana mungkin lebih sesuai untuk mengidentifikasi level support atau resistance. Preferensi rata-rata bergerak bergantung pada tujuan, gaya analisis dan horison waktu. Chartis harus bereksperimen dengan kedua jenis rata-rata bergerak serta rentang waktu yang berbeda untuk menemukan yang paling sesuai. Bagan di bawah ini menunjukkan IBM dengan SMA 50 hari berwarna merah dan EMA 50 hari berwarna hijau. Keduanya memuncak pada akhir Januari, namun penurunan EMA lebih tajam dibanding penurunan di SMA. EMA muncul pada pertengahan Februari, namun SMA terus berlanjut hingga akhir Maret. Perhatikan bahwa SMA muncul lebih dari sebulan setelah EMA. Panjang dan Jangka Waktu Panjang rata-rata bergerak tergantung pada tujuan analisis. Rata-rata pergerakan pendek (5-20 periode) paling sesuai untuk tren dan perdagangan jangka pendek. Chartists yang tertarik pada tren jangka menengah akan memilih moving average yang lebih lama yang dapat memperpanjang periode 20-60. Investor jangka panjang akan memilih moving averages dengan periode 100 atau lebih. Beberapa panjang rata-rata bergerak lebih populer daripada yang lain. Rata-rata pergerakan 200 hari mungkin yang paling populer. Karena panjangnya, ini jelas merupakan moving average jangka panjang. Selanjutnya, rata-rata pergerakan 50 hari cukup populer untuk tren jangka menengah. Banyak chartis menggunakan moving average 50 hari dan 200 hari bersama-sama. Jangka pendek, rata-rata pergerakan 10 hari cukup populer di masa lalu karena mudah dihitung. Seseorang hanya menambahkan angka dan memindahkan titik desimal. Identifikasi Trend Sinyal yang sama dapat dihasilkan dengan menggunakan rata-rata bergerak sederhana atau eksponensial. Seperti disebutkan di atas, preferensi tergantung pada masing-masing individu. Contoh di bawah ini akan menggunakan rata-rata bergerak sederhana dan eksponensial. Istilah moving average berlaku untuk moving average rata-rata dan eksponensial. Arah rata-rata bergerak menyampaikan informasi penting tentang harga. Kenaikan rata-rata bergerak menunjukkan bahwa harga pada umumnya meningkat. Perputaran rata-rata bergerak menunjukkan bahwa harga rata-rata turun. Kenaikan moving average jangka panjang mencerminkan uptrend jangka panjang. Jatuh rata-rata bergerak jangka panjang mencerminkan tren turun jangka panjang. Bagan di atas menunjukkan 3M (MMM) dengan rata-rata pergerakan eksponensial 150 hari. Contoh ini menunjukkan seberapa baik rata-rata bergerak bekerja bila trennya kuat. EMA 150 hari ditolak pada bulan November 2007 dan sekali lagi pada bulan Januari 2008. Perhatikan bahwa dibutuhkan penurunan 15 untuk membalikkan arah rata-rata pergerakan ini. Indikator lagging ini mengidentifikasi pembalikan tren saat terjadi (paling banter) atau setelah terjadi (paling buruk). MMM terus berlanjut hingga Maret 2009 lalu melonjak 40-50. Perhatikan bahwa EMA 150 hari tidak muncul sampai setelah gelombang ini terjadi. Setelah itu, bagaimanapun, MMM terus berlanjut dalam 12 bulan ke depan. Moving averages bekerja cemerlang dalam tren yang kuat. Double Crossover Dua moving averages dapat digunakan bersamaan untuk menghasilkan sinyal crossover. Dalam Analisis Teknis Pasar Keuangan. John Murphy menyebutnya metode crossover ganda. Crossover ganda melibatkan satu moving average yang relatif pendek dan satu moving average yang relatif panjang. Seperti semua moving averages, panjang umum moving average mendefinisikan kerangka waktu untuk sistem. Sistem yang menggunakan EMA 5 hari dan EMA 35 hari akan dianggap jangka pendek. Sistem yang menggunakan SMA 50 hari dan SMA 200 hari akan dianggap jangka menengah, bahkan mungkin dalam jangka panjang. Crossover bullish terjadi ketika moving average yang lebih pendek melintasi di atas moving average yang lebih panjang. Ini juga dikenal sebagai golden cross. Sebuah crossover bearish terjadi ketika moving average yang lebih pendek melintasi di bawah moving average yang lebih panjang. Ini dikenal sebagai salib mati. Pindah rata-rata crossover menghasilkan sinyal yang relatif terlambat. Bagaimanapun, sistem ini menggunakan dua indikator lagging. Semakin lama periode rata-rata bergerak, semakin besar lag pada sinyal. Sinyal ini bekerja hebat saat tren bagus terus berlanjut. Namun, sistem crossover moving average akan menghasilkan banyak whipsaws tanpa adanya tren yang kuat. Ada juga metode triple crossover yang melibatkan tiga moving averages. Sekali lagi, sinyal dihasilkan saat rata-rata bergerak terpendek melintasi dua rata-rata bergerak yang lebih lama. Sistem crossover tiga sederhana mungkin melibatkan rata-rata pergerakan 5 hari, 10 hari dan 20 hari. Bagan di atas menunjukkan Home Depot (HD) dengan EMA 10 hari (garis putus-putus hijau) dan EMA 50 hari (garis merah). Garis hitam adalah tutupan harian. Menggunakan crossover rata-rata bergerak akan menghasilkan tiga whipsaws sebelum menangkap perdagangan yang baik. EMA 10 hari tersebut pecah di bawah EMA 50 hari pada akhir Oktober (1), namun ini tidak berlangsung lama selama 10 hari bergerak kembali di atas pada pertengahan November (2). Salib ini bertahan lebih lama, namun crossover bearish berikutnya di bulan Januari (3) terjadi mendekati level harga akhir November, sehingga terjadi pula whipsaw lainnya. Salib bearish ini tidak bertahan lama karena EMA 10 hari bergerak kembali di atas 50 hari beberapa hari kemudian (4). Setelah tiga sinyal buruk, sinyal keempat meramalkan pergerakan yang kuat saat saham menguat di atas 20. Ada dua takeaways di sini. Pertama, crossover rentan terhadap whipsaw. Filter harga atau waktu dapat diterapkan untuk membantu mencegah whipsaws. Pedagang mungkin memerlukan crossover sampai 3 hari terakhir sebelum bertindak atau memerlukan EMA 10 hari untuk bergerak di atas EMA 50 hari dengan jumlah tertentu sebelum bertindak. Kedua, MACD dapat digunakan untuk mengidentifikasi dan mengkuantifikasi crossover ini. MACD (10,50,1) akan menunjukkan garis yang mewakili perbedaan antara dua rata-rata bergerak eksponensial. MACD berubah positif selama salib emas dan negatif selama salib mati. The Persentase Harga Oscillator (PPO) dapat digunakan dengan cara yang sama untuk menunjukkan perbedaan persentase. Perhatikan bahwa MACD dan PPO didasarkan pada rata-rata pergerakan eksponensial dan tidak akan sesuai dengan rata-rata bergerak sederhana. Bagan ini menunjukkan Oracle (ORCL) dengan EMA 50 hari, EMA 200 hari dan MACD (50,200,1). Ada empat perpindahan rata-rata bergerak selama periode 2 12 tahun. Tiga yang pertama menghasilkan whipsaws atau perdagangan buruk. Tren yang berkelanjutan dimulai dengan crossover keempat saat ORCL maju ke pertengahan 20an. Sekali lagi, pergerakan rata-rata crossover bekerja dengan baik saat trennya kuat, namun menghasilkan kerugian karena tidak adanya tren. Harga Crossover Moving averages juga dapat digunakan untuk menghasilkan sinyal dengan crossover harga sederhana. Sinyal bullish dihasilkan saat harga bergerak di atas rata-rata bergerak. Sinyal bearish dihasilkan saat harga bergerak di bawah moving average. Harga crossover dapat dikombinasikan untuk diperdagangkan dalam tren yang lebih besar. Rata-rata pergerakan yang lebih lama menentukan nada untuk tren yang lebih besar dan moving average yang lebih pendek digunakan untuk menghasilkan sinyal. Kita akan mencari harga bullish hanya bila harga sudah di atas moving average yang lebih panjang. Ini akan diperdagangkan selaras dengan tren yang lebih besar. Misalnya, jika harga di atas rata-rata pergerakan 200 hari, para chartists hanya akan fokus pada sinyal ketika harga bergerak di atas rata-rata pergerakan 50 hari. Jelas, pergerakan di bawah rata-rata pergerakan 50 hari akan mendahului sinyal seperti itu, namun persilangan bearish semacam itu akan diabaikan karena tren yang lebih besar sudah naik. Salib bearish hanya akan menyarankan pullback dalam uptrend yang lebih besar. Sebuah cross back di atas moving average 50 hari akan menandakan kenaikan harga dan kelanjutan dari uptrend yang lebih besar. Bagan berikutnya menunjukkan Emerson Electric (EMR) dengan EMA 50 hari dan EMA 200 hari. Saham bergerak di atas dan bertahan di atas rata-rata pergerakan 200 hari di bulan Agustus. Ada penurunan di bawah EMA 50 hari pada awal November dan lagi di awal Februari. Harga cepat bergerak kembali di atas EMA 50 hari untuk memberikan sinyal bullish (panah hijau) selaras dengan uptrend yang lebih besar. MACD (1,50,1) ditunjukkan di jendela indikator untuk mengkonfirmasi harga di atas atau di bawah EMA 50 hari. EMA 1 hari sama dengan harga penutupan. MACD (1,50,1) positif saat penutupan berada di atas EMA 50 hari dan negatif saat penutupan berada di bawah EMA 50 hari. Support and Resistance Moving averages juga dapat berperan sebagai support dalam uptrend dan resistance dalam downtrend. Pergerakan naik jangka pendek mungkin akan menemukan support mendekati moving average 20 hari sederhana, yang juga digunakan pada Bollinger Bands. Sebuah uptrend jangka panjang mungkin akan menemukan support di dekat rata-rata pergerakan sederhana 200 hari, yang merupakan moving average jangka panjang yang paling populer. Jika fakta, rata-rata pergerakan 200 hari mungkin menawarkan dukungan atau penolakan hanya karena sangat banyak digunakan. Hal ini hampir seperti ramalan yang dipenuhi sendiri. Bagan di atas menunjukkan Komposit NY dengan rata-rata pergerakan sederhana 200 hari dari pertengahan 2004 sampai akhir tahun 2008. Dukungan 200 hari telah diberikan berkali-kali selama uang muka. Begitu tren terbalik dengan double support break, moving average 200 hari bertindak sebagai resistance di sekitar 9500. Jangan mengharapkan level support dan resistance yang tepat dari moving averages, terutama moving average yang lebih lama. Pasar didorong oleh emosi, yang membuat mereka cenderung mengalami overshoot. Alih-alih tingkat yang tepat, moving averages dapat digunakan untuk mengidentifikasi zona pendukung atau resistance. Kesimpulan Keuntungan menggunakan moving averages perlu dipertimbangkan terhadap kerugiannya. Moving averages adalah trend berikut, atau lagging, indikator yang akan selalu menjadi langkah di belakang. Ini belum tentu hal yang buruk sekalipun. Toh, trennya adalah teman Anda dan yang terbaik adalah berdagang ke arah tren. Moving averages memastikan bahwa trader sesuai dengan tren saat ini. Meskipun trennya adalah teman Anda, sekuritas menghabiskan banyak waktu dalam rentang perdagangan, yang membuat rata-rata bergerak tidak efektif. Begitu dalam tren, rata-rata bergerak akan membuat Anda tetap bertahan, tapi juga memberi sinyal terlambat. Jangan berharap untuk menjual di bagian atas dan membeli di bagian bawah menggunakan moving averages. Seperti kebanyakan alat analisis teknis lainnya, moving averages tidak boleh digunakan sendiri, namun bersamaan dengan alat pelengkap lainnya. Chartis dapat menggunakan moving averages untuk menentukan keseluruhan trend dan kemudian menggunakan RSI untuk menentukan level overbought atau oversold. Menambahkan Moving Average ke Chart StockCharts Moving averages tersedia sebagai fitur overlay harga di meja kerja SharpCharts. Dengan menggunakan menu drop-down Overlay, pengguna dapat memilih rata-rata bergerak sederhana atau rata-rata bergerak eksponensial. Parameter pertama digunakan untuk mengatur jumlah periode waktu. Parameter opsional dapat ditambahkan untuk menentukan bidang harga mana yang harus digunakan dalam perhitungan - O untuk Open, H untuk High, L untuk Low, dan C for the Close. Koma digunakan untuk memisahkan parameter. Parameter opsional lainnya dapat ditambahkan untuk menggeser rata-rata bergerak ke kiri (masa lalu) atau kanan (masa depan). Angka negatif (-10) akan menggeser rata-rata bergerak ke kiri 10 periode. Angka positif (10) akan menggeser rata-rata bergerak ke kanan 10 periode. Beberapa moving averages dapat dilapisi dengan harga plot dengan hanya menambahkan garis overlay lainnya ke meja kerja. Anggota StockCharts dapat mengubah warna dan gaya untuk membedakan antara beberapa moving averages. Setelah memilih indikator, buka Advanced Options dengan mengklik segitiga hijau kecil. Opsi Lanjutan juga dapat digunakan untuk menambahkan overlay rata-rata bergerak ke indikator teknis lainnya seperti RSI, CCI, dan Volume. Klik di sini untuk live chart dengan beberapa moving average yang berbeda. Menggunakan Moving Averages with StockCharts Scans Berikut adalah beberapa contoh pemindaian yang dapat digunakan anggota StockCharts untuk memindai berbagai situasi rata-rata bergerak: Bullish Moving Average Cross: Pemindaian ini mencari saham dengan moving average 150 hari yang baru dan sebuah salib bullish dari 5 - day EMA dan EMA 35 hari. Rata-rata pergerakan 150 hari meningkat selama diperdagangkan di atas level lima hari yang lalu. Cross bullish terjadi ketika EMA 5 hari bergerak diatas EMA 35 hari di atas rata-rata volume. Bearish Moving Average Cross: Pemindaian ini mencari saham dengan pergerakan moving average 150 hari yang rendah dan umpan silang bearish EMA 5 hari dan EMA 35 hari. Rata-rata pergerakan 150 hari turun selama perdagangan di bawah level lima hari yang lalu. Salib bearish terjadi ketika EMA 5 hari bergerak di bawah EMA 35 hari di atas rata-rata volume. Pelajaran lebih lanjut Buku John Murphy039 memiliki bab yang ditujukan untuk rata-rata bergerak dan berbagai kegunaannya. Murphy mencakup pro dan kontra moving averages. Selain itu, Murphy menunjukkan bagaimana rata-rata bergerak bekerja dengan Bollinger Bands dan sistem perdagangan berbasis saluran. Analisis Teknis Pasar Keuangan John Murphy
No comments:
Post a Comment